Manifolds And Modular Forms During the winter term I gave a course at the University of Bonn under the title Manifolds and Modular Forms Iwanted to develop the theory of Elliptic Genera and to leam it myself on this occa

During the winter term 1987 88 I gave a course at the University of Bonn under the title Manifolds and Modular Forms Iwanted to develop the theory of Elliptic Genera and to leam it myself on this occasion This theory due to Ochanine, Landweber, Stong and others was relatively new at the time The word genus is meant in the sense of my book Neue Topologische MethodDuring the winter term 1987 88 I gave a course at the University of Bonn under the title Manifolds and Modular Forms Iwanted to develop the theory of Elliptic Genera and to leam it myself on this occasion This theory due to Ochanine, Landweber, Stong and others was relatively new at the time The word genus is meant in the sense of my book Neue Topologische Methoden in der Algebraischen Geometrie published in 1956 A genus is a homomorphism of the Thom cobordism ring of oriented compact manifolds into the complex numbers Fundamental examples are the signature and the A genus The A genus equals the arithmetic genus of an algebraic manifold, provided the first Chem class of the manifold vanishes According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure The elliptic genera depend on a parameter For special values of the parameter one obtains the signature and the A genus Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r 2 of the modular group the two cusps o giving the signature and the A genus Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.

## One thought on “Manifolds And Modular Forms”